Unit VIII: Polarization

Introduction

If we oscillate one end of a string up and down then a
transverse wave is generated [see Fig. 22.1(a)]. Each point of
the string executes a sinusoidal oscillation in a straight line
(along the x-axis) and the wave is, therefore, known as a
linearly polarized wave. It is also known as a plane polarized
wave because the string is always confined to the x-z plane.
The displacement for such a wave can be written in the form

x(z,r:j =a cos(kz—(r)t~ o} ll

o 22.1)
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where a represents the amplitude of the wave and ¢, is the
phase constant to be determined from the instant we choose
as t =0 the y-coordinate of the displacement is always zero.
At any instant the displacement will be a cosine curve as
shown in Fig. 22.1(a). Further, an arbitrary point z = z, will
execute a simple harmonic motion of amplitude a. The string
can also be made to vibrate in the y-z plane [see Fig. 22.1(b)]
for which the displacement would be given by

xL_z’ t__) =0 ) l (22.2)
and  y(z,7)=a cos(kz—r - )]

In general. the string can be made to vibrate in any plane
containing the z-axis. If one rotates the end of the string on
the circumference of a circle then each point of the string will
move in a circular path as shown in Fig. 22.2: such a wave is
known as a circularly polarized wave and the corresponding
displacement would be given by

x[z,t]z a cos[kz—(r)r— ():j l
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so that x” + " is a constant (= a’). As we will see later, Eq.
(22.3) represents a right circularly polarized wave.
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We next consider a long narrow slit placed in the path of
the string as shown in Fig. 22 3(a). If the length of the slit is
along the direction of the displacement then the entire
amplitude will be transmitted as shown in Fig. 22 3(a). On the
other hand, if the slit is at right angle to the direction of the
displacement, then almost nothing will be transmitted to the
other side of the slit [see Fig. 22.3(b)]. This is because of the
fact that the slit allows only the component of the
displacement, which is along the length of the slit, to pass
through; as such, if a longitudinal wave was propagating
through the string then the amplitude of the transmitted
wave would have been the same for all orientations of the
slit. Thus, the change in the amplitude of the transmitted
wave with the orientation of the slit is due to the transverse
character of the wave. Indeed, an experiment which is, in
principle, very similar to the experiment discussed above
proves the transverse character of light waves. However,
before we discuss the experiment with light waves we must
define an unpolarized wave.

We once again consider transverse waves generated at
one end of a string. If the plane of vibration is changed in a
random manner in very short intervals of time, then such a
wave is known as an unpolarized wave . If an unpolarized
wave falls on a slit S, (see Fig. 22.4) then the displacement
associated with the transmitted wave will be along the length
of the slit and a rotation of the slit will not affect the
amplitude of the transmitted wave although the plane of
polarization of transmitted wave depend on the orientation
of the slit (see Fig. 22.4). Thus, the transmitted wave will be
linearly polarized and the slit S, is said to act as a polarizer. If
this polarized beam falls on another slit S, (see Fig. 22.4).
then by rotating the slit S,. we obtain a variation of the
transmitted amplitude as discussed ecarlier: the second slit is
said to act as an analyzer.

y-polarized wave

(b)

Fig. 22.1 (a) A linearly polarized wave on a string with the displacement confined to the x-z plane; (b) A linearly polar-
ized wave on a string with the displacement confined to the y z plane.
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Fig. 22.2 (a) The displacement corresponding to a circu-
larly polarized wave - all points on the string are

at the same distance from the z-axis. (b) Each
point on the string rotates on the circumference

of the circle.
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Fig. 22.3 1If a linearly polarized transverse wave (propa-
gating on a string) is incident on a long narrow
slit, then the slit will allow only the component
of the displacement, which is along the length of
the slit, to pass through.

Polarized light

The transverse character of light waves was known in the
carly years of the nineteenth century; however, the nature of
the displacement associated with a light wave was known
only after Maxwell had put forward his famous
clectromagnetic theory. We will discuss the basic
concept of polarization of light beam in this unit.

Associated with a plane clectromagnetic wave
there is an electric field E and a magnetic field H which are at
right angles to each other. For a linearly polarized wave
propagating in the z direction (in a dielectric) the electric and
magnetic fields can be written in the form [see Fig. 22.5]

Linearly
polarized wave

No wave

Unpolarized
wave

Sy

Fig. 22.4 If an unpolarized wave propagating on a string is
incident on a long narrow slit S;, then the trans-
mitted beam will be linearly polarized and its
amplitude will not depend on the orientation of
S;. If this polarized wave is allowed to pass
through another slit S,, then the intensity of the
emerging wave will depend on the relative ori-
entation of S; with respect to S,.

E, =Eycos(kz—cx), E, =0, E.=0 (22.4)
and H, =0, H,= Hycos(kz—t), H.=0 (22.5)
where
k = ;22 w i (22.6)
and
0= (22.7)
e

represents the velocity of the waves, £ and jf are the
dielectric permittivity and the magnetic permeability of the
medium. Since E. = 0 and /. = 0, the wave is transverse.
Equations (22.4) and (22.5) also show that E and H are at
right angles to each other and both the vectors are at right
angles to the direction of propagation (which is along the
z-axis). In fact, the direction of propagation is along the
vector (E X H). Electromagnetic theory also tells us that for a
dielectric [see Sec. 23.3]:

HD ZLEU = 1 El} (22.8)
0] Mo/ n
where
i
M= ,*—=cltg= 1200 ohms
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is the intrinsic impedance of free space and » is the refractive
index of the dielectric (see Sec. 23.3).
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Fig. 22.5 An x-polarized electromagnetic wave propagat-
ing in the z-direction.



We consider an ordinary light beam falling on a Polaroid
P, as shown in Fig. 22.6; a Polaroid is a plastic-like material
used for producing polarized light—it will be discussed in
detail in the next section. In general, an ordinary light beam
(like the one coming from a sodium lamp or from the sun) is
unpolarized, i.e., the electric vector (in a plane transverse to
the direction of propagation) keeps changing its direction in
a random manner (sec Fig. 22.6). When such a becam is
incident on a Polaroid the emergent light is linearly polarized
with its electric vector oscillating in a particular direction as
shown in Fig. 22.6. The direction of the electric vector of the
emergent beam will depend on the orientation of the Polaroid.
As will be shown in Sec. 22.3.1 the component of E along a
particular direction gets absorbed by the Polaroid and the
component at right angles to it passes through. The direction
of the electric vector of the emergent wave is usually called
the pass axis of the Polaroid. If the Polaroid P, is absent and
if the Polaroid P, is rotated about the z-axis, there will be no
variation of intensity. However, if we place another Polaroid
P,, then by rotating the Polaroid P, (about the z-axis) one

will observe variation of intensity and at two positions there
X
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Fig. 22.6 For an unpolarized wave propagating in the
+z-direction, the electric vector (which lies in the
x-y plane) continues to change its direction in a
random manner. If an unpolarized light beam is
allowed to fall on a Polaroid, then the emerging
beam will be linearly polarized; i.e., the electric
vector will oscillate along a particular direction.
If we place another Polaroid P,, then the intensity
of the transmitted light will depend on the rela-
tive orientation of P, with respect to Py.; if the
pass axis of the second polaroid P, makes an
angle # with the x-axis, the intensity of the
emerging beam will vary as cos’d

will be almost complete darkness (see Fig. 22.7). A similar
phenomenon will also be observed if instead of rotating the
Polaroid P, we rotate P;. On the basis of our carlier
discussions, this phenomenon proves the transverse
character of light; i.c., the displacement associated with a
light wave is at right angles to the direction of propagation
of the wave. The Polaroid P, acts as a polarizer and the
transmitted beam is linearly polarized. The second Polaroid
acts as an analyzer.

The expression of electric field of a polarized light
wave propagating in the z direction can be written as

(i) x polarized light wave
Ey = E,cos(kz — wt),E, =0,E, =0
(ii) y polarized light wave

Ex=0,E, = E,cos(kz — wt), E, =0

(a) (b) (©

Fig. 22.7 Actual photographs with two Polaroids at
different angles of relative orientation. (a) If the
two Polaroids are parallel to each other, almost
the entire light passes through. (b) When the two
Polaroids are oriented at with respect to each
other about 50% of the light passes through grey.
(c) When the two Polaroids are at right angles to
each other (notice the position of the grey dot)
almost no light will pass through. Photographs
adapted from www.a-levelphysicstutor.com;
used with kind permission from Dr. Alan J. Reed.

See Fig. 26 in the prelim pages.

(ii) right circularly polarized light wave
E,(z,t) = E, cos(kz — wt)
Ey(z,t) = E, sin(kz — wt)

The x and y components of the E-field are 90°
out of phase

The resulting E-field rotates clockwise around the
k-vector (looking along k). This is called a right-
handed rotation.

(iii) left circularly polarized light wave
E.(z,t) = E, cos(kz — wt)
Ey(z,t) = —E, sin(kz — wt)
The x and y components of the E-field are always
90° out of phase, but in the other direction.

The resulting E-field rotates counterclockwise
around the k-vector (looking along k). This is a left-
handed rotation.



(iv) elliptically polarized light wave
E.(z,t) = E, cos(kz — wt)
Ey(z,t) = —E, sin(kz — wt)

where Eox # Egyx

E-field variation
over time (and y

space) //)
(W

The resulting E-field can rotate clockwise or
counter-clockwise around the k-vector.

Malus’ Law

Let us consider a Polaroid P, which has a pass-axis parallel
to the x-axis (see Fig. 22.6); i.c., if an unpolarized beam
propagating in the z direction is incident on the Polaroid,
then the electric vector associated with the emergent wave
will oscillate along the x-axis. We next consider the incidence
of the x-polarized beam on the Polaroid P, whose pass axis
makes an angle @ with the x-axis (see Fig. 22.6). If the
amplitude of the incident clectric field is E(, then the
amplitude of the wave emerging from the polaroid P, will
be E, cos@ and thus the intensity of the emerging beam will
be given by

I=1, cos’@ (22.9)

where /;, represents the intensity of the emergent beam when
the pass axis of P, is also along the x-axis (i.c., when 8=0).
Equation (22.9) represents Malus' Law. Thus, if a linearly
polarized beam is incident on a Polaroid and if the Polaroid is
rotated about the z-axis, then the intensity of the emergent
wave will vary according to the above law. For example, if the
Polaroid P, shown in Fig. 22.6 is rotated in the clockwise
direction, then the intensity will increase till the pass-axis is
parallel to the x-axis; a further rotation will result in a
decrease in intensity till the pass-axis is parallel to the y-axis,
where the intensity will be almost zero. If we further rotate it,
it will pass through a maximum and again a minimum before it
reaches its original position.

Figure 22.7 shows actual photographs of two Polaroids at
different relative orientations. In Fig. 22.7 (a) the two are
parallel to each other and therefore almost the entire light
passes through. In Fig. 22.7 (b) the two Polaroids are oriented
at 45° with respect to each other and about 50% of the light
passes  through; because according to  Malus'

lawl =1 cos?45 = %In_ Finally, in In Fig. 22.7 (c) the two
Polaroids are at right angles to cach other (notice the
position of the blue dot) and almost no light passes through

because I = I, cos”90 =0 [see also Fig. 26 in the prelim
pages of the book]

Production of polarized light

In this section we will discuss wvarious methods for
producing linearly polarized light waves.

1. The wire grid polarizer and the
polaroid

The physics behind the working of the wire grid polarizer is
probably the easiest to understand. It essentially consists of
a large number of thin copper wires placed parallel to ecach
other as shown in Fig. 22.8. When an unpolarized electro-
magnetic wave is incident on it, then the component of the
clectric vector along the length of the wire is absorbed. This
is due to the fact that the electric field does work on the elec-
trons inside the thin wires and the energy associated with
the electric field is lost in the Joule heating of the wires. On
the other hand, (since the wires are assumed to be very thin)
the component of the electric vector along the x-axis passes
through without much attenuation. Thus, the emergent wave
is linearly polarized with the electric vector along the x-axis.
However, for the system to be effective (i.c., for the E, com-
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Fig. 22.8 The wire-grid polarizer.

ponent to be almost completely attenuated) the spacing be-
tween the wires should be less than A. Clearly, the
fabrication of such a polarizer for a 3 cm microwave is rela-
tively easy because the spacing has to be less than 3 cm. On
the other hand, since the light waves are associated with a
very small wavelength (~ 0.5 um_‘}_ the fabrication of a polar-
izer in which the wires are placed at distances less than
0.5 pun is extremely difficult. Nevertheless, Bird and Parrish
did succeed in putting about 30,000 wires in about one inch;
for further details see Refs. 22.1 and 22.2. The details of the
procedure for making this wire grating are also discussed in
Ref. 22.1. The original work of Bird and Parrish was published
in 1950 (sec Ref. 22.2).

As already pointed out, it is extremely difficult to fabricate
a wire grid polarizer which would be effective for visible light.
However, instead of long thin wires, one may employ long
chain polymer molecules that contain atoms (like iodine)
which provide high conductivity along the length of the
chain. These long chain molecules are aligned so that they
are almost parallel to cach other. Because of the high
conductivity provided by the iodine atoms, the electric field
parallel to the molecules get absorbed. A sheet containing
such long chain polymer molecules (which are aligned
parallel to each other) is known as a Polaroid. When a light
beam is incident on such a Polaroid. the molecules (aligned



parallel to each other) absorb the component of electric field
which is parallel to the direction of alignment because of the
high conductivity provided by the iodine atoms: the
component perpendicular to it passes through. Thus, the
aligned conducting molecules act similar to the wires in the
wire grid polarizer and since the spacing between two
adjacent long chain molecules is small compared to the
optical wavelength, the Polaroid is usually very effective in
producing linearly polarized light. The aligning of the long
chain conducting molecules is not very difficult and the
experimental details of producing the polarizer are given in
Ref. 22.1.

2. Polarization by reflection

We consider the incidence of a plane wave on a dielectric;
we assume that the eclectric vector associated with the
incident wave lies in the plane of incidence as shown in
Fig. 22.9 (a). It will be shown in Sec. 24.2 that if the angle of
incidence @ is such that

6=0,= tan™"

then the reflection coefficient is zero. Thus, if an unpolarized
beam is incident at this angle, then the reflected beam will be
linearly polarized with its electric vector perpendicular to the
plane of incidence [see Fig. 22.9(b)]. Equation (22.10) is
referred to as the Brewster's law and at this angle of
incidence, the reflected and the transmitted rays are at right
angles to cach other; the angle @, is known as the polarizing
angle or the Brewster angle.

A (commercially available) polarized sunglass blocks the
horizontal component and allows only the wvertical
component to pass through [see Fig. 22.10(a)]. For the air-
water interface, m; =1 and n, = 1.33 and the polarizing angle
8, =53". Thus, if the sunlight is incident on the seca at an
angle close to the polarizing angle, then the reflected light
will be almost linearly polarized [see Fig. 22.10 (b)] and if we
now wear polarized sunglasses. the glare. ie., the light
reflected from the water surface, will not be seen. This is the
reason why polarized sunglasses are often used by
fishermen to remove the glare on the surface and see the fish
inside water. Figure 22.11 (a) shows a photograph on the
road with ordinary glasses; if we use polarized lenses, the
glare can be considerably reduced as shown in Fig. 22.11 (b):
see 27 and 28 in the prelim pages. Figure 22.12 shows
sunlight incident on a water surface at an angle close to the
polarizing angle so that the reflected light is almost polarized.
If the Polaroid allows the (almost polarized) reflected beam to
pass through, we see the glare from water surface [see Fig.
22.12 (a)]. the glare can be blocked by using a vertical
polarizer and one can see the inside of the water [see Fig.

ﬁ) (22.10)

m

3. Polarization by double refraction

In Sections 22.5 and 22.9 we will discuss the phenomenon of
double refraction and will show that when an unpolarized
beam enters an anisotropic crystal like calcite, it splits up into
two linearly polarized beams (see Fig. 22.13). If by some
method, we could eliminate one of the beams, then we would
obtain a linearly polarized beam.
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(b) Almost p-polarized
Fig. 22.9 (a) If a p-polarized wave (E in the plane of inci-

dence) is incident on the interface of two
dielectrics with the angle of incidence equal to

(= tan ~! ny/n;) then the reflection coefficient is
zero. (b)If an unpolarized beam is incident at
Brewester’s angle, the reflected beam is plane
polarized whose electric vector is perpendicular
to the plane of incidence. The transmitted beam is
partially polarized and if this beam is made to
undergo several reflections, then the emergent
beam is almost plane polarized with its electric
vector in the plane of incidence.

Unpolarized Incident Polarized Reflected
Light Light

(b)

Fig. 22.10 (a) A (commercially available) polarized sun-
glass blocks the horizontal component and
allows only the vertical component to pass
through. (b) If the sunlight is incident on the wa-
ter surface at an angle close to the Brewster angle,
then the reflected light will be almost polarized
and if we now wear polarized sunglasses, the
glare, i.e., the light reflected from the water sur-
face will not be seen. Polarized sunglasses are
often used by fishermen to remove the glare on
the surface and see the fish inside water. See also

Fig. 27 in the prelim pages.

A simple method for eliminating one of the beams is
through sclective absorption; this property of selective
absorption is known as dichroism. A crystal like tourmaline
has different coefficients of absorption for the two linearly
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Fig. 2211 (a) A photograph on the road with ordinary
glasses. (b) If we use polarized lenses, the glare
can be considerably reduced. Photographs
adapted from www.esaver.com.my/index.php?
option=com_content&view=article&id=95&
Itemid=220. See also Fig. 28 in the prelim
pages.

polarized beams into which the incident beam splits up.
Consequently, one of the beams gets absorbed quickly and
the other component passes through without much
attenuation. Thus, if an unpolarized beam is passed through
a tourmaline crystal, the emergent beam will be almost
linearly polarized (see Fig. 22.14).

Another method for eliminating one of the polarized
beams is through total internal reflection. We will show in
Sections 22.5 and 22.10 that the refractive indices
corresponding to the two beams are different. If one can
sandwich a layer of a material whose refractive index lies
between the two, then for one of the beams, the incidence
will be at a rarer medium and for the other it will be at a
denser medium. This principle is used in a Nicol prism which

Fig. 2212 If the sunlight is incident on the water surface at
an angle close to the Brewster angle, then the
reflected light will be almost polarized. (a) If
the polaroid allows the (almost polarized) re-
flected beam to pass through, we see the glare
from water surface. (b) The glare can be
blocked by using a vertical polarizer and one
can see the inside of the water. Figure adapted
from the website http://polarization.com/wa-
ter/ water.html created by Dr ] Alcoz; used with
permission of Dr. Alcoz. A color photo appears
as Fig. 29 in the prelim pages.

consists of a calcite crystal cut in such a way that for the
beam, for which the sandwiched material is a rarer medium,
the angle of incidence is greater than the critical angle. Thus,
this particular beam will be eliminated by total internal
reflection. Figure 22.15 shows a properly cut calcite crystal in
which a layer of Canada Balsam has been introduced so that
the ordinary ray undergoes total internal reflection. The
extraordinary component passes through and the beam
emerging from the crystal is linearly polarized.

Fig. 2213 When an unpolarized light beam is incident
normally on a calcite crystal, it usually splits up
into two linearly polarized beams. Photograph
courtesy Professor V Lakshminarayanan and
adapted from Ref. 22.16. A color photo appears
as Fig. 30 in prelim pages.

4. Polarization by scattering

If an unpolarized beam is allowed to fall on a gas, then the

beam scattered at 90° to the incident beam is linearly polar-

ized. This follows from the fact that the waves propagating
y

Incident unpolarized

Linearly polarized
wave

Tourmaline

crystal
Fig. 2214 When an unpolarized beam enters a dichroic
crystal like tourmaline, it splits up into two lin-
early polarized components. One of the
components gets absorbed quickly and the
other component passes through without much
attenuation. [Adapted from Ref. 22.3; used with

permission. ]

in the y direction are produced by the x-component of the
dipole oscillations (see Fig. 22.16). The y component of the
dipole oscillations will produce no field in the y direction (see
Sec. 23.5.1). Indeed. it was through scattering experiments
that Barkla could establish the transverse character of X-
rays. Clearly, if the incident beam is linearly polarized with its
electric vector along the x direction, then there will be no
scattered light along the x axis. As such, one can carry out
an analysis of a scattered wave by allowing it to undergo a
further scattering [see Fig. 22.16(b)].

Calcite
e-ray

Fig. 2215 The Nicol prism. The dashed outline corre-
sponds to the natural crystal which is cut in such
a way that the ordinary ray undergoes total in-
ternal reflection at the Canada Balsam layer.



As discussed in Sec. 7.6 the blue color of the sky is due to
Rayleigh scattering of sunlight by molecules in our atmo-
sphere. When the sun is about to set, if we look vertically
upwards, light will have a high degree of polarization; this is
because the angle of scattering will be very close to 90°. If
we view the blue sky (which is vertically above us) with a ro-
tating Polaroid, we will observe considerable variation of
intensity.
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Fig. 2216 (a) If the electromagnetic wave is propagating
along the z-direction, then the scattered wave
along any direction perpendicular to the z-axis
will be linearly polarized. (b) If a linearly po-
larized wave (with its E oscillating along the
x-direction) is incident on a dipole, then there
will be no scattered wave in the x-direction.

Polarization by double refraction and
Huygen’s theory

If an unpolarized light beam is incident normally on a calcite
crystal [see Fig. 22.13 and 22.20(a)]. it will split up into two
linearly polarized beams. The beam which travels undeviated
is known as the ordinary ray (usually abbreviated as the
o-ray) and obeys Snell's laws of refraction. On the other
hand. the second beam, which in general does not obey
Snell's laws, is known as the extra-ordinary ray (usually
abbreviated as the e-ray). The appearance of two beams is
due to the phenomenon of double refraction and a crystal
like calcite is usually referred to as a "double refracting"
crystal. If we put a polaroid PP’ behind the calcite crystal and
rotate the polaroid (about NN) then for two positions of the
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Unpolarized beam o-ray Calcite
(a) P’
P
-
- ; N Q ;U*. ss e
Unpolarized beam Calcite P
(6) .

Fig. 22.20 (a) When an unpolarized light beam is incident
on a calcite crystal, it usually splits up into two
linearly polarized beams. (b) If we rotate the
crystal about NN’ then the e-ray will rotate

about NN,

polaroid (when the pass-axis is perpendicular to the plane of
the paper) the e-ray will be completely blocked and only the
o-ray will pass through. On the other hand, when the pass-
axis of the polaroid is in the plane of the paper (i.c., along the
line PP’) then the o-ray will be completely blocked and only
the e-ray will pass through. Further, if we rotate the crystal
about NN’ then the e-ray will rotate about the axis [see
Fig. 22.20 (b)]. Figure 22.21 shows a typical double image as
viewed through a doubly refracting crystal like calcite. If we
rotate the crystal about the vertical axis, one of the images
will be fixed, while the other image will rotate.

t&. F 1L ,‘_a-‘.\stal
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>

o

Fig. 22.21 Typical double image of a sentence in a printed
text. The ordinary image is fixed, while the
upper extraordinary image is shifted and can
rotate. Photograph courtesy Professor
Vasudevan Lakshminarayanan and adapted
from Ref. 22.16; see Fig. 31 in the prelim pages.

In Sec. 22.13 we will show that whereas the velocity of the
ordinary ray is the same in all directions, the velocity of the
extraordinary ray is different in different directions; a medium
(like calcite, quartz), which exhibits different properties in
different directions, is called an anisotropic medium. Along a



particular direction (fixed in the crystal), the two velocities
are equal; this direction is known as the optic axis of the
crystal. In a crystal like calcite, the two rays have the same
speed only along one direction (which is the optic axis); such
crystals are known as uniaxial crystals”. The velocities of the
ordinary and the extraordinary rays are given by the
following equations [see Eqgs. (22.120) and (22.123)]:

Uy = — (ordinary ray) (22.36)

L2 2
% _—— 92 p =5 92 (extraordinary ray)  (22.37)
Uy (e/n,) (e¢/n,)

where n, and n, are constants of the crystal and @ is the
angle that the ray makes with the optic axis; we have
assumed the optic axis to be parallel to the z-axis. Thus, ¢/n,
and ¢/n, are the velocities of the extraordinary ray when it
propagates parallel and perpendicular to the optic axis. Now,
the equation of an ellipse (in the z-x plane) is given by

2 2
St
a b
If (p. 6) represent the polar coordinates, then z = pcos8
and x = psin@ and the equation of the ellipse can be written

in the form

(22.38)

1 cos> @ N sin’ @
7 2 B2

(22.39)

In three dimensions, the above equation will represent an
ellipsoid of revolution with the optic axis as the axis of
revolution. (If we rotate a circle about one of its diameters,
we will obtain a sphere, and if we rotate an ellipse about its
major (or minor) axis, we will obtain an ellipsoid of
revolution). Thus, if we plot v,, as a function of €, we will
obtain an ellipsoid of revolution; on the other hand, since v,,,
is independent of @. if we plot v,, (as a function of @), we
will obtain a sphere. Along the optic axis, =0 and

We next consider the value of v, perpendicular to the
optic axis (i.e., for@ —r/2). For a negative crystal n, < n,
and

R_".

J =<0, (22.40)
2. nf

Ve [9 =

Thus, the minor axis will be along the optic axis and the

cllipsoid of revolution will lic outside the sphere [see

Fig. 22.22(a)]. On the other hand, for a positive crystal n,>n,
and

vre[QZEJziqvm
2

n

(22.41)

The major axis will now be along the optic axis and
the ellipsoid of revolution will lie inside the sphere [sce
Fig. 22.22 (b)]. The ellipsoid of revolution and the sphere are
known as the ray velocity surfaces.

We next consider an unpolarized plane wave incident on a
calcite crystal. The plane wave will split up into 2 plane

z ‘ !9 i z
(Optic axis) k( ;’ (Optic axis)

Negative crystal Positive crystal
(a) (b)

>

Fig. 22.22 (a) In a negative crystal, the ellipsoid of revolu-
tion (which corresponds to the extra-ordinary
ray) lies outside the sphere; the sphere corre-
sponds to the ordinary ray. (b) In a positive
crystal, the ellipsoid of revolution (which corre-
sponds to the extra-ordinary ray) lies inside the

sphere.

waves. One is referred to as the ordinary wave (usually
abbreviated as the o-wave) and the other is referred to as the
extraordinary wave (usually abbreviated as the e-wave). For
both waves, the space and time dependence of the vectors E,
D, B and H can be assumed to be of the form

ilk.r =)
e

where k denotes the propagation vector and represents the
direction normal to the phase fronts. In general, the k vector
for the o- and e-waves will be different. In Sec. 22.12 we will
show that

1. Both ordinary and extraordinary waves are linearly
polarized.

2. D . k=0 for both 0- and e-waves (22.42)
Thus, D is always at right angles to k and for this
reason the direction of D is chosen as the direction of
"yibrations".

3. If we assume the z-axis to be parallel to the optic axis
then,

D.Z =0 (and D . k = 0) for the o-wave (22.43)
Thus, for the o-wave, the D vector is at right angles to
the optic axis as well as to k.

4. On the other hand, for the e-wave,
D lies in the plane containing k and the optic axis (and
of course. D . k =0) (22.44)

Using the recipe given above, we will consider the
refraction of a plane electromagnetic wave incident on a
negative crystal like calcite; a similar analysis can be carried
out for positive crystals.

Normal incidence

We first assume a plane wave incident normally on a uniaxial
crystal as shown in Fig. 22.23. Without loss of generality, we
can always choose the optic axis to lic on the plane of the
paper. The direction of the optic axis is shown as a dashed
line in Fig. 22.23. In order to determine the ordinary ray, with
the point B as the center, we draw a sphere of radius c¢/n,,.
Similarly, we draw another sphere (of the same radius) from
the point D. The common tangent plane to these spheres is
shown as OO’, which represents the wavefront correspond-
ing to the ordinary refracted ray. It may be noted that the
dots show the direction of "vibrations" (i.e., direction of D)
which are perpendicular to k and to the optic axis [see
Eq.22.43].
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Fig. 22.23 The refraction of a plane wave incident on a
negative crystal whose optic axis is along the
dashed line.

In order to determine the extraordinary ray, we draw an
ellipse (centered at the point B) with its minor axis (= ¢/n,)
along the optic axis and with major axis equal to ¢/n,. The
cllipsoid of revolution is obtained by rotating the ellipse
about the optic axis. Similarly, we draw another ellipsoid of
revolution from the point D. The common tangent plane to
these ellipsoids (which will be perpendicular to k) is shown
as EE” in Fig. 22.23. If we join the point B to the point of
contact O, then corresponding to the incident ray AB, the
direction of the ordinary ray will be along BO. Similarly, if we
join the point B to the point of contact E (between the
ellipsoid of revolution and the tangent plane EE’), then
corresponding to the incident ray AB. the direction of the
extraordinary ray will be along BE.

It is to be noted that the direction of k is the same for both
o- and e-waves i.¢., both are along BO. However, if we have
a narrow beam incident as AB, then while the ordinary ray
will propagate along BO, the extraordinary ray will propagate
in a different direction BE, as shown in Fig. 22.23(a).
Obviously, if we have a different direction of the optic axis
[see Fig. 22.23(b)]. then, although the direction of the
ordinary ray will remain the same, the extraordinary ray will
propagate in a different direction. Thus, if a ray is incident
normally on a calcite crystal, and if the crystal is rotated
about the normal, then the optic axis and the extraordinary
ray will also rotate (about the normal) on the periphery of a
cone; each time the ray will lie in the plane containing the
normal and the optic axis [see Fig. 22.20 (b)].

The ray refractive index corresponding to the extra
ordinary ray (n,,) will be given by

c -
e =——= Jnf cos” @ + n?2 sin’ 0

re

(22.45)
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Fig. 22.24 Propagation of a plane wave incident normally on a negative uniaxial crystal. In (a) and (c) the optic axis is

shown as parallel straight lines and in (b) the optic axis is perpendicular to the plane of the figure and is shown
in dots. In each case, the extra-ordinary and the ordinary rays travel in the same direction.

o-ray e-ray



If one starts with the above equation and uses Fermat's
principle to obtain the refracted ray, the results will be
consistent with the ones obtained in this section (sce
Sec. 3.5).

Now, as mentioned earlier, the direction of vibrations for
the ordinary ray is normal to the optic axis and the vector k;
as such, the directions of these vibrations in this case, will
be normal to the plane of the paper and have been shown as
dots in Fig. 22.23. Similarly, since the direction of vibrations
for the extraordinary ray is perpendicular to k and lies in the
plane containing the extraordinary ray and the optic axis,
they are along the small straight lines drawn on the
extraordinary ray in Fig. 22.23. Thus, an incident ray will split
up into two rays propagating in different directions and
when they leave the crystal, we will obtain two linearly
polarized beams.

In the above case, we have assumed the optic axis to
make an arbitrary angle ¢ with the normal to the surface. In
the special cases of r =0 and &t = /2, the ordinary and the
extraordinary rays travel along the same directions as shown
in Figs. 22.24(a), (b) and (c). Figure 22.24 (b) corresponds to
the case when the optic axis is normal to the plane of the
paper; and as such, the section of the extraordinary
wavefront in the plane of the paper will be a circle. Once
again, both the ordinary and the extraordinary rays travel
along the same direction. It may be mentioned that Figs. 22.24
(a) and (b) correspond to the same configuration; in both
cases the optic axis is parallel to the surface. The figures
represent two different cross-sections of the same set of
spherical and ellipsoidal wavefronts.

Now, corresponding to Figs. 22.24 (a) and (b), if the
incident wave is polarized perpendicular to the optic axis, it
will propagate as an o-wave with velocity ¢/n,. On the other
hand, if the incident wave is polarized parallel to the optic
axis, it will propagate as an e-wave with velocity ¢/n,. In Fig,
22.24 (c) the optic axis is normal to the surface and both
waves will travel with the same velocity.

Notice that in the configuration shown in Figs. 22.24 (a)
and (b), although both the waves travel in the same direction,
they propagate with different velocities. This phenomenon is
used in the fabrication of quarter and half wave plates (see
Sec. 22.6). On the other hand, in the configuration shown in
Fig. 22.24(c), both the waves not only travel in the same
direction but they also propagate with the same velocity.

Ordinary ray

Extraordinary ray

(@)

Oblique incidence

We next consider the case of a plane wave incident obliquely
on a negative uniaxial crystal [see Fig. 22.25(a)]. Once again
we use Huygens' principle to determine the shape of the
refracted wavefronts. Let BD represent the incident
wavefront. If the time taken for the disturbance to reach the
point F from D is ¢, then with B as center we draw a sphere of
radius (¢/n,)f and an ellipsoid of revolution of semi-minor
and semi-major axes (c/n,)t and (¢/n,)f respectively; the semi-
minor axis is along the optic axis. From the point F we draw
tangent planes FO and FE to the sphere and the ellipsoid of
revolution respectively. These planes would represent the
refracted wavefronts corresponding to the ordinary and the
extraordinary rays respectively. If the points of contact are O
and E. then the ordinary and extraordinary refracted rays will
propagate along BO and BE respectively; this can also be
shown using Fermat's principle (see Sec. 2.5). The directions
of vibration of these rays are shown by dots and small lines
respectively and are obtained by using the general rules
discussed carlier. The shape of the refracted wavefronts
corresponding to the particular case ofr=0 andx=7/2
can be obtained very easily. Figure 22.24(b) corresponds to
the case when the optic axis is normal to the plane of
incidence. The sections of both the wavefronts will be
circles; consequently, the extraordinary ray will also satisfy

Snell's law and we will have
sini

=n, (for the e-ray when the optic-axis is

sin r normal to the plane of incidence)  (22.46)

Of course, for the ordinary ray we will always have

sini

=n, (22.47)

sinr

. Optic axis normal .
to the page

(b)

Fig. 22.25 Refraction of a plane wave incident obliquely on a negative uniaxial crystal. In (a), the direction of the optic
axis is along the dashed line. In (b), the optic axis is perpendicular to the plane of the paper.



Nicol prism

William Nicol (1770-1851) of Edinburgh developed
what is now called the Nicol prism in 1828. The
problem with using calcite as a polarizer is the presence
of two beams of polarized light. In principle, the E ray
can be eliminated by using a narrow crystal, long
enough so that the E ray can be sufficiently displaced
from the O ray to allow it to be masked off. Nicol used
the now classic technique of slicing the crystal
diagonally at QS and fastening the two halves back
together with a cement (such as canada balsam) of such
in index of refraction that the O ray is totally reflected
at the internal interface, leaving the E ray to emerge
alone from the crystal.

Basic Principle

The basic principle behind Nicol Prism is based on its

unique behaviour on the event of incidence of light rays

on its surface. When an ordinary ray of light is passed

through a calcite crystal, it is broken up into two rays:

« An ‘Ordinary ray’ which is polarized and has its
vibrations perpendicular to the principle section of
the crystal and

« An extra-ordinary ray which is polarized and whose
vibration is parallel to the principle section of the
prism. If by some optical means, one of the two rays
eliminates, the ray emerging through the crystal will
be Plane polarized. In Nicol Prism, ordinary ray is
eliminated and Extra-ordinary ray, which is plane
polarized, is transmitted through the prism.

Construction

«» It is constructed from the calcite crystal ABCD
having length three times of its width

« Its end faces AB and CD are cut such that the angles
in the principal section become 68° and 112° in
place of 71° and 109°.

«» The crystal is than cut diagonally into two parts. The
surface of these parts are ground to make optically
flat and then these are polished.

+«+ These polished surfaces are connected together with
a special cement known as Canada Balsam.

A A Optic axis
VA

4

Fig. Construction of Nicol prism.

Working

+«* When a beam of unpolarized light is incident on the
face A;B, it gets split into two refracted rays, named
O-ray and E-ray.

«» These two rays are plane polarized rays, whose
vibrations are at right angle to each other. The
refractive index of Canada Balsam cement being
1.55 lies between those of ordinary (1, = 1.65837)
and extraordinary (u, = 1.48641) refractive indices.

«» Thus, the Canada Balsam layer act as an optically
rarer medium for the ordinary ray and act as an
optical denser medium for the extraordinary ray.

«» When ordinary ray of light travels in the calcite
crystal and enters the Canada Balsam cement layer,
it passes from denser to rarer medium. Moreover,
the angle of incidence is greater than the critical
angle, the incident ray is totally internally reflected
from the crystal and only the extraordinary ray is
transmitted through the prism.

«» Therefore, fully plane polarized light is generated

with the help of Nicol prism.

Nicol prism as analyser

Consider two Nicol prisms arranged coaxially one after
another. When a beam of unpolarized light is incident
on the first prism P, the emergent beam is plane
polarized with its vibrations in principal section of first
prism. This prism is called polarizer. When principal
section of both prisms are parallel, the extraordinary
ray from the first prism can freely transmit through the
second prism, and thus the intensity of emergent light is
maximum.

But when the principal sections are at right angles to
each other the intensity of emergent light is minimum
i.e., there no light it transmitted through the second
prism. This is because the ray on emerging out of the
first prism has vibrations in its principal section and,
therefore, perpendicular to the principal section of the
second prism. It will thus have no component in the
principle section of the latter and will travel as an
ordinary ray in to be totally reflected at the balsam
layer. Here first prism produced plane polarized light
and second prism detects and analyses it.

P A

Fig. Two Nicol prisms, one as polarizer (P) and other
as analyzer (A) placed in such as way that (a) principal
section of both prisms are parallel, (b) principal
sections are at right angles and (c) principal sections are
at an angle of 180°.



Limitations

When the angle of incidence at the crystal surface is
increased, the angle of incidence at Calcite — Balsam
surface decreases. When the angle of incidence at the
crystal surface becomes greater than 14°, the angle of
incidence of Calcite — Balsam surface becomes less
than the critical angle. In this position ordinary ray is
also transmitted through the prism along with
extraordinary ray so light emerging from Nicol prism
will not be plane polarized.

When angle of incidence at crystal surface is decreased,
the extraordinary ray makes less angle with the optic
axis, as a result its refractive index increase, because
the refractive index of calcite crystal for E ray is
different in different directions through the crystal
being maximum when the E ray travels at right angles
to the optic axis and minimum when E ray travels along
with O ray and no light emerges from the prism

Production of circularly and elliptic-
ally polarized light

In the previous section we had considered how a plane wave
(incident on a doubly refracting crystal) splits up into two
waves each characterized by a certain state of polarization.
The direction of vibration associated with the ordinary and
extraordinary waves is obtained by using the recipe given by
Eqs. (22.42) and (22.43). In this section, we will consider the
normal incidence of a plane-polarized beam on a calcite
crystal whose optic axis is parallel to the surface of the
crystal as shown in Fig. 22.26. We will study the state of
polarization of the beam emerging from the crystal. We will
assume the y-axis to be along the optic axis. Now, as
discussed in the previous section, if the incident beam is
x-polarized the beam will propagate as an ordinary wave and
the extraordinary wave will be absent. Similarly, if the incident
beam is y-polarized the beam will propagate as an
extraordinary wave and the ordinary wave will be absent—
these arc the modes of the crystal. For any other state of
polarization of the incident beam, both the extraordinary and
the ordinary components will be present. For a negative
crystal like calcite n, < n, and the e-wave will travel faster
than the o-wave: this is shown by putting s (slow) and f
(fast) inside the parenthesis in Fig. 22.26. For a positive
crystal like quartz n, > n, and the e-wave will travel faster

than the o-wave.
X
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Fig. 22.26 A linearly polarized beam making an angle 45°
with the y-axis gets converted to a LCP after
propagating through a calcite QWP; further, an
LCP gets converted to a RCP after propagating
through a calcite HWP. The optic axis in the
QWP and HWP is along the y-direction as

shown by lines parallel to the y-axis.

Let the electric vector (of amplitude E; ) associated with
the incident polarized beam make an angle ¢ with the y-axis;
in Fig. 22.26, ¢ has been shown to be equal to 45°—but for
the time being we will keep our analysis general and
assume ¢ to be an arbitrary angle. Such a beam can be as-
sumed to be a superposition of two linearly polarized beams
(vibrating in phase), polarized along the x- and y-directions
with amplitudes E, sin¢» and E; cos¢* respectively. The
x-component (whose amplitude is E; sin¢) passes through
as an ordinary beam propagating with velocity E; cos¢. The
y-component (whose amplitude is E, sin¢) passes through
as an extraordinary beam propagating with velocity ¢ /n,,.
Since n, # n, the two beams will propagate with different ve-
locities and, as such, when they come out of the crystal, they
will not be in phase. Consequently, the emergent beam
(which will be a superposition of these two beams) will be, in
general, elliptically polarized.

Let the plane z = 0 represent the surface of the crystal on
which the beam is incident. The x- and y-components of the
incident beam can be written in the form

E, = E, sin¢ cos(kz—qr)
o _ (22.48)
E, = E; cos¢ cos(kz—(r)
where k(= / c_} represents the free-space wave number.
Thus, at z = 0, we will have

E.(z=0)=E, sin¢ cosax; E, (z= 0_‘] = E, cosQ@ cos ()t
Inside the crystal, the x-component will propagate as an

ordinary wave (with velocity ¢/n,) and the y-component will

propagate as an extraordinary wave (with velocity ¢/n,)

E, = E; sin¢® cos (n,kz —wr) (ordinary wave)

E, = E; cos¢ cos(nkz—wr) (extraordinary wave)

If the thickness of the crystal is d, then at the emerging
surface, we will have

E.=E, sing cos(wr —8&,)
E,=E, cos cos(wr —0,)

where 8, = n,kd and 8, = nk d. By appropriately choosing
the instant 1= 0 the components may be rewritten as
E,= E; sin¢ cos(r — 6}

_ (22.49)
E, = E; cos@ cos (0

where 8=8,-6,=kd(n,—n,)=—(n,—n,)d (22.50)
¢

represents the phase difference between the ordinary and the
extraordinary beams. Clearly, if the thickness of the crystal is
such that 8 = 2, 4m,67,... . the emergent beam will have the
same state of polarization as the incident beam. Now, if the
thickness d of the crystal is such that 0= 772, the crystal is
said to be a quarter wave plate (usually abbreviated as
QWP)—a phase difference of 772 implies a path difference of
a quarter of a wavelength. On the other hand, if the thickness
of the crystal is such that @ = 7, the crystal is said to be a
half wave plate (usually abbreviated as HWP).

Example 22,6 As an example, let us consider the case
whenO=m/4 and 9=r/2 . 1e, the x- and y-components of the
incident wave have equal amplitudes and the crystal introduces a



phase difference of /2 (see Fig. 22.24). Thus, for the emergent
beam we have

EJ:—E—Q- sin@t ;E‘:—E2 cos X (22.51)
V2 2

If we use a method similar to that described in Example 22.1,
we will find that a wave described by the above equation represents
a left circularly polarized wave. In order to introduce a phase
difference of /2, the thickness of the crystal should have a value
given by the following equation:

c
@{n,—n,)

20 (22.52)

d= —l-
4 (_na_ne.)

X
2
where A, is the free-space wavelength. For calcite. for 4, = 5893 fi
and at 18 C.n,=1.65836 and n, = 1.48641. Substituting these
values, we obtain

:M m = 0.000857 mm
4x0.17195

Thus a calcite QWP (at A, = 5893 fk =0.5893 yun) will have a
thickness of 0.000857 mm and will have its optic axis parallel to
the surface; such a QWP will introduce a phase difference ofyr/2
between the ordinary and the extraordinary components at

A9 =5893 A . It should be pointed out that if the thickness is an
odd multiple of the above quantity, i.e., if

8 =00 1628 e (22.53)
4(n, -n,)

d=(2m+1)
then in the example considered above (i.e.. when ¢=x/4), it can
easily be shown that the emergent beam will be left circularly
polarized for m = 0, 2, 4, ... and right circularly polarized for
m=1 34, .

We next consider the case when the linearly polarized
beam (with ¢=r/4) is incident on a HWP so that =7 . i.c.,
the x- and y-components of the incident wave have equal
amplitudes and the crystal introduces a phase difference
of 7 (sce Fig. 22.27). Thus, for the emergent beam we have

E, E,
E. =-—Lcosex . E, = =L cosexr

V2

N :

Calcite
HWP

which represents a linearly polarized wave with the direction
of polarization making an angle of 135° with the y-axis (see
Fig. 22.27). If we now pass this beam through a calcite QWP,
the emergent beam will be right circularly polarized as shown
in Fig. 22.27. On the other hand, if a left circularly polarized is
incident normally on a calcite HWP, the emergent beam will
be right circularly polarized as shown in Fig. 22.26.

Thus, for a HWP the thickness (for a negative crystal)

would be given by
) A
d=(2m+1)— .
L " )2(”0_'”2)

We may mention that if the crystal thickness is such that
if8=m/2, 7,37/2,2x,... the emergent beam will be ellipti-
cally polarized. For a positive crystal (like quartz), n, > n, and
Eq. (22.49) should be written in the form

E,=E, sind cos(wx + &) (22.54)
E.= E; coso cos ox
where

&= 2 dl.ﬂe - nu)
c -

For a quarter wave plate,

= % - m=0,1,2...
4l:\ne' —-n, )
Thus, if in Fig. 22.26, the calcite QWP is replaced by a

quartz QWP, the beam emerging from the QWP will be right
circularly polarized.

d=02m+1)

Example 22.7 We consider a left circularly polarized beam

(Ap =5893 A=0.5893 1un) incident normally on a calcite crystal
(with its optic axis cut parallel to the surface) of thickness
0.005141 mm. The electric field for the incident left circularly
polarized beam at z = 0 can be written as

E =E sinex . E, = E cos@t (22.55)

Now

6
- x X . x
o (o= n)d X 21 _ 0171955141107 X2 _

Ao 5.893107

RCP

Calcite
QWP

Fig. 22.27 If the linearly polarized beam making an angle 45° with the y-axis is incident on a HWP, the plane of polariza-
tion gets rotated by 90° this beam gets converted to a RCP after propagating through a calcite QWP. The optic
axis in the QWP and HWP is along the y-direction as shown by lines parallel to the z-axis.



Thus the emergent wave will be [cf. Eq. (22.49)]
E, = E; sin(ex=3T)=—E sinx . E, = E cos
which represents a right circularly polarized beam.

Example 22.8 We next consider a left circularly polarized

beam (A, = 5893 }0\) 1s incident on a quartz crystal (with its optic
axis cut parallel to the surface) of thickness 0.022 mm. We assume
n, and n, to be 1.54425 and 1.55336 respectively. The electric field
for the incident left circularly polarized beam at z = 0 would be
given by Eq. (22.55). Further,

0.00911 % 2.2 107
5.893 107

t}’:{nd—no)gd:b'r = 0.68T
4o

Thus the emergent beam will be
E.=Esin(@r -0.687) . E,= E, cos &x

which will represent a right elliptically polarized light.

Analysis of polarized light

In the earlier sections we have seen that a plane wave can be
characterized by different states of polarizations, which may
be anyone of the following:

(a) linearly polarized

(b) circularly polarized

(c) elliptically polarized

(d) unpolarized

(e) mixture of linearly polarized and unpolarized

(f) mixture of circularly polarized and unpolarized

(g) mixture of elliptically polarized and unpolarized light

To the naked eye all the states of polarizations will appear
to be the same. In this section, we will discuss the procedure
for determining the state of polarization of a light beam.
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If we introduce a polaroid in the path of the beam and
rotate it about the direction of propagation, then either of the
following three possibilities can occur:

(i) If there is complete extinction at two positions of the
polarizer, then the beam is linearly polarized.

(i) If there is no variation of intensity, then the beam is
either unpolarized or circularly polarized or a mixture of
unpolarized and circularly polarized light. We now put
a quarter wave plate on the path of the beam followed
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