
Using Mathematica for matrices
Matrices

Matrices are entered in "row form", such that

In[195]:= aa = 882, 1<, 8-1, 2<<

Out[195]= 882, 1<, 8-1, 2<<

gives the following matrix (the // and "MatrixForm" displays the result so it looks like a matrix)

In[196]:= aa êê MatrixForm
Out[196]//MatrixForm=

K
2 1
-1 2

O

Picking out components now requires two indices, which are in standard "row, column" order:

aa@@1, 2DD

1

In[197]:= bb = 883, 2<, 8-1, -1<<; bb êê MatrixForm
Out[197]//MatrixForm=

K
3 2
-1 -1

O

There are some canned matrices, in particular the identity
(the argument of IdentityMatrix giving the linear dimension):

id = IdentityMatrix@3D; id êê MatrixForm

1 0 0
0 1 0
0 0 1

Another predefined set of matrices are the Pauli matrices:

8PauliMatrix@1D êê MatrixForm,
PauliMatrix@2D êê MatrixForm, PauliMatrix@3D êê MatrixForm<

:K
0 1
1 0

O,
0 -Â

Â 0
, K

1 0
0 -1

O>

There's a special command to create a diagonal matrix:

DiagonalMatrix@81, 2, 3<D êê MatrixForm

1 0 0
0 2 0
0 0 3

Matrix multiplication is written with a Dot (and is not commutative, as we know)

In[199]:= aa.bb êê MatrixForm
bb.aa êê MatrixForm

Out[199]//MatrixForm=

K
5 3
-5 -4

O

Out[200]//MatrixForm=

K
4 7
-1 -3

O

Whereas a product simply multiplies the corresponding elements, one by one:

In[201]:= aa bb êê MatrixForm

Out[201]//MatrixForm=

K
6 2
1 -2

O

Addition and subtraction and multiplication by scalars work:

aa + bb êê MatrixForm
aa - bb êê MatrixForm
3 aa êê MatrixForm

K
5 3
-2 1

O

K
-1 -1
0 3

O

K
6 3
-3 6

O

Multiplication works with any shape matrices, as long as they are conformable. Here's a vector, which,
although it's entered as a row-like vector:

v5 = 83, 1<

83, 1<

is treated like a column vector under matrix multiply:

aa.v5

87, -1<

It is displayed like a column.

aa.v5 êê MatrixForm

K
7
-1

O

However, one can also multiply from the left, in which case the vector is treated as a row

v5.aa

85, 5<

Transpose transposes:

2 Linear2.nb

Transpose@aaD êê MatrixForm

K
2 -1
1 2

O

Conjugate conjugates, element by element:

cc = 882 + I, 3 I<, 8-3 I, 4<<; cc êê MatrixForm

2 + Â 3 Â

-3 Â 4

Conjugate@ccD êê MatrixForm

2 - Â -3 Â

3 Â 4

To hermitian conjugate use the ConjugateTranspose[] function

ConjugateTranspose@ccD êê MatrixForm

2 - Â 3 Â

-3 Â 4

or you can make a “dagger” which does the same thing by typing “escape ct escape”

cc¾ êê MatrixForm

2 - Â 3 Â

-3 Â 4

Functions of Matrices

Recall the matrix aa:

aa êê MatrixForm

K
2 1
-1 2

O

Trace

Tr@aaD

4

Determinant

Det@aaD

5

Inverse

aainv = Inverse@aaD; aainv êê MatrixForm

2
5

- 1
5

1
5

2
5

Check that inverse “works”

Linear2.nb 3

aainv.aa êê MatrixForm
aa.aainv êê MatrixForm

K
1 0
0 1

O

K
1 0
0 1

O

There's no problem with moving to larger matrices, which would be painful by hand:

dd = 881, 2, 3, 4, 5<, 82, 3, 7, 8, 9<, 8-3, 0, 6, 4, 2<,
86, 2, 4, 5, 1<, 8-1, -2, 5, 2, 3<<; dd êê MatrixForm

1 2 3 4 5
2 3 7 8 9
-3 0 6 4 2
6 2 4 5 1
-1 -2 5 2 3

Inverse@ddD êê MatrixForm

44
35

- 4
5

- 3
35

8
35

2
7

351
35

- 31
5

23
35

32
35

8
7

621
70

- 28
5

19
35

31
35

19
14

- 179
14

8 - 4
7

- 8
7

- 27
14

59
70

- 2
5

- 4
35

- 1
35

3
14

Rank---it does the row reduction for you:

MatrixRank@ddD

5

The rank is the same for the transpose, as it should be:

MatrixRank@Transpose@ddDD

5

Mathematica does row reduction for you. Technically this gives the "reduced row echelon form", with as
many off-diagonal zeroes as possible.

RowReduce@ddD êê MatrixForm

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

A simple example discussed in lecture notes:

ee = 882, 2<, 81, 1<<; ee êê MatrixForm

K
2 2
1 1

O

4 Linear2.nb

MatrixRank@eeD

1

RowReduce@eeD êê MatrixForm

K
1 1
0 0

O

More complicated functions of matrices
Mathematica has a built in function for exponentiating a matrix

aa = 881, 1<, 80, 2<<; MatrixExp@aaD êê MatrixForm

‰ -‰ + ‰2

0 ‰2

Note that this is different from exponentiating in the usual way, which simply exponentiates each
element.

E^aa êê MatrixForm

‰ ‰

1 ‰2

There’s also a function for taking powers of matrices (which works for all complex powers too)

MatrixPower@aa, 10D êê MatrixForm

K
1 1023
0 1024

O

MatrixPower@aa, -2D êê MatrixForm

1 - 3
4

0 1
4

MatrixPower@aa, ID

991, -1 + 2Â=, 90, 2Â==

Linear2.nb 5

Dimensions (order) of a matrix

In[1]:= mat1 = {{5, 2, 2}, {3, 6, 3}, {6, 6, 9}}

Out[1]= {{5, 2, 2}, {3, 6, 3}, {6, 6, 9}}

In[2]:= mat1 // MatrixForm

Out[2]//MatrixForm=

5 2 2
3 6 3
6 6 9

In[3]:= Dimensions[mat1]

Out[3]= {3, 3}

The command “ Dimensions “ - gives dimension or order of the matrix.

In[4]:= Det[mat1]

Out[4]= 126

In[5]:= {λ1, λ2, λ3} = Eigenvalues[mat1]

Out[5]= {14, 3, 3}

The command “ Eigenvalues “ - gives eigenvalues of the matrix.

In[6]:= mat2 = Array[Min, {3, 3}]; mat2 // MatrixForm

Out[6]//MatrixForm=

1 1 1
1 2 2
1 2 3

In[7]:= Eigenvalues[mat2]

Out[7]= Root-1 + 5 #1 - 6 #12 + #13 &, 3,

Root-1 + 5 #1 - 6 #12 + #13 &, 2, Root-1 + 5 #1 - 6 #12 + #13 &, 1

The eigenvalues here are returned as Root objects, in this case the three roots of the characteristic

polynomial -1 + 5 x - 6 x2 + x3. The option setting “Cubics → True” will permit the display of such roots

in terms of radicals.

In[8]:= Eigenvalues[mat2, Cubics → True]

Out[8]= 2 +
72/3


3

2
9 + ⅈ 3 

1/3
+


7

2
9 + ⅈ 3 

1/3

32/3
,

2 -

72/3 1 - ⅈ 3 

22/3 3 9 + ⅈ 3 
1/3

-

1 + ⅈ 3  
7

2
9 + ⅈ 3 

1/3

2 × 32/3
,

2 -

72/3 1 + ⅈ 3 

22/3 3 9 + ⅈ 3 
1/3

-

1 - ⅈ 3  
7

2
9 + ⅈ 3 

1/3

2 × 32/3


One may also get a numerical approximation of the eigenvalues as follows:

In[9]:= Eigenvalues[mat2] // N

Out[9]= {5.04892, 0.643104, 0.307979}

In[10]:= {v1, v2, v3} = Eigenvectors[mat1]

Out[10]= {{2, 3, 6}, {-1, 0, 1}, {-1, 1, 0}}

The command “ Eigenvectors “ - gives eigenvectors of the matrix.

In[11]:= Eigensystem[mat1]

Out[11]= {{14, 3, 3}, {{2, 3, 6}, {-1, 0, 1}, {-1, 1, 0}}}

The command “ Eigensystem “ - gives both the eigenvalues and the eigenvectors of the matrix. The

output is a list whose first item is a list of eigenvalues and whose second item is a list of corresponding

eigenvectors.

 Solving Systems of Linear Equations

Suppose we want to solve a Nonhomogeneous system of linear equations in the form m x = b, where m

is the coefficient matrix, x is a column vector of variables, and b is a column vector. When b is a vector

with at least one nonzero entry, then system is called nonhomogeneous.

In[12]:= Clear[m, x, x1, x2, x3, x4, b];

m = {{1, 5, -4, 1}, {3, 4, -1, 2}, {3, 2, 1, 5}, {0, -6, 7, 1}};

x = {{x1}, {x2}, {x3}, {x4}};

b = {{1}, {2}, {3}, {4}};

m.x ⩵ b

Out[16]= {{x1 + 5 x2 - 4 x3 + x4}, {3 x1 + 4 x2 - x3 + 2 x4}, {3 x1 + 2 x2 + x3 + 5 x4}, {-6 x2 + 7 x3 + x4}} ⩵

{{1}, {2}, {3}, {4}}

This can be interpreted as a list of four linear equations.

In[17]:= Det[m]

Out[17]= 35

Since matrix m is nonsingular, the system has a unique solution.

In[18]:= ArrayFlatten[{{m, b}}] // MatrixForm

Out[18]//MatrixForm=

1 5 -4 1 1
3 4 -1 2 2
3 2 1 5 3
0 -6 7 1 4

The command “ArrayFlatten”- gives the augmented matrix. The command “RowReduce” is used to find

the reduced row echelon form of the matrix. Finding the reduced row echelon form of the matrix is

nothing but performing Gaussian Elimination.

2 Matrices.nb

In[19]:= RowReduce[%] // MatrixForm

Out[19]//MatrixForm=

1 0 0 0 -
127

35

0 1 0 0 141

35

0 0 1 0 139

35

0 0 0 1 13

35

This gives x1 =
-127

35
, x2 =

141
35

, x3 =
139
35

, x4 =
13
35

.

The command “LinearSolve” provides a quick means for solving systems that have a single solution.

In[20]:= LinearSolve[m, b]

Out[20]= -
127

35
, 

141

35
, 

139

35
, 

13

35


Notice that in a system having an infinite number of solutions, LinearSolve will return only one of them,

giving no warning that there are others.

A homogeneous system of linear equations is of the form m x = 0. If m is nonsingular, a homogeneous

system will have only the trivial solution x = 0, while if m is singular the system will have an infinite

number of solutions. The set of all solutions to a homogeneous system is called the null space of m.

In[33]:= Clear[m, x, b];

m = {{0, 2, 2, 4}, {1, 0, -1, -3}, {2, 3, 1, 1}, {-2, 1, 3, -2}};

x = {{x1}, {x2}, {x3}, {x4}};

b = {{0}, {0}, {0}, {0}};

Det[m]

Out[37]= 0

In[38]:= RowReduce[ArrayFlatten[{{m, b}}]] // MatrixForm

Out[38]//MatrixForm=

1 0 -1 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 0

This tells us that x1 = x3, x2 = -x3 and x4 = 0. That is any vector of the form (t, -t, t, 0), where t is a real

number, is a solution, and the vector (1, -1, 1, 0) forms a basis for the solution space.

The command “NullSpace”- gives a set of basis vectors for the solution space of the homogeneous

equation mx = 0.

In[39]:= NullSpace[m]

Out[39]= {{1, -1, 1, 0}}

Nullity of the matrix m can be found using the command “Length”.

In[40]:= Length[NullSpace[m]]

Out[40]= 1

Matrices.nb 3

